HISTORICAL PROBLEM AREAS - LESSONS LEARNED

EXPENDABLE AND REUSABLE VEHICLE PROPULSION SYSTEMS

STPSS PANEL ON DEVELOPMENT, MANUFACTURING AND CERTIFICATION

June 25 - 29, 1990

Dale A. Fester

Martin Marietta Astronautics Group

MARTIN MARIETTA

Expendable Launch Vehicle Lessons Learned

- Avoid Single String Systems
- Design Must Be Inspectable
- Qual By Flight Usage Not Acceptable
 - No Margin Demonstrated
 - Must Qualify All Components to Needed Level
 - Either Meet Specs or Change Specs
- Use All-Welded Feed Systems
 - Maintenance of Cleanliness During Changeout
 - Scavenging Components as Source of Spares
 - Multiple Checking Wears Things Out

Expendable Launch Vehicle Lessons Learned (concl)

- Dynamic Envelope Must Accommodate
 - Stacking of Tolerances
 - Deflections
 - Margin
- Provide Needed Instrumentation
 - Must Know Flight Environments for Every System
- Overall Systems Integrator Needed (Also Applies to Reusable Systems)
 - Interfaces Between independent Contractors
 - Integrate 2 to 3 Sigma Parts
- Concerns
 - Pogo Suppression
 - Pyrotechnics Checkout
 - Proper Circuit Testing

Upper Stage/Transfer Vehicle Lessons Learned

- Must Meet Safety Requirements
 - Difficult for New Vehicle & Almost Impossible for Prior Design ELV-Launched Vehicle
 - Vehicle Really a Space-Operating LV
 - Across Board Two Failure Tolerance May Not Be Reasonable
- Should Not Let Politics Drive Systems

Shuttle Systems - Dynamics

External Tank

- Propellant Dynamics During ET/Orbiter Separation for RTLS
- Required Low-g Drop Tower & KC-135 Testing
- RCS Orbiter Translation & Aerodynamic Forces Sufficient For Separation

External Tank

- Had Natural Convection Recirculation System
- Replaced With Bubbling Helium Up Feedline (Saved 400 lbm)

RCS Tanks

- Extensive Ground Development Program (Element, Subsystem, System)
- Structural Fatigue and Flow Dynamics
 - Vibration Testing
 - Flow Splitting In Multiple Paths
 - Simultaneous Thruster Firing

Shuttle Systems - Reuse

External Tank

- One of Best Performers Since Not Reused

RCS Tanks (OMS Tanks)

- Specifically Developed for Orbiter
- Extensive Ground Development Program (Element, Subsystem, System)
- Qualified for Full 100-Mission Life
- Included Structural Fatigue & Flow Dynamics Testing
- Excellent Reuse History
- N2O4 Flow Decay No Problem
 - Use Proper Purity & Handling
 - Follow Established Processes & Procedures

Components

- Many Were Really Expendable Component Designs
- Others Were Exponential Extrapolations (e.g. SSME)
- Usually Not Qualified for Full Duration & Operating Environments
- Result: Rebuild Rather than Reliable Reuse

HIGH PRESSURE OPERATION REDUCES WEIGHT, COST

Reusable System Issues & Lessons Learned

- Material Property Database Lacking for Operational Environments
 - Both Fatigue & Flow Life
 - Data Was Extrapolated or Estimated
 - Didn't Understand Reuse & Long Life
 - Verification/Diagnostics Not Available

· Life Unknown

- Design to Life with Margin to Cover Unknowns
- Margin Must Include Degradation
 - Debris
 - Wear & Tear
 - Atomic Oxygen
- Qualify for Full Duration
- Fleet Leader Concept Has Shortcomings

Summary

- Need Materials Property Database Covering Operational Environments
- Need Fault Tree
 - Does Fix Ripple Through System & Cause Problem
- Need Accurate Lessons-Learned Database (Must Transfer to Young Engineers)
- Two Major Issues Are Long Life & Reusability
 - Need History & Diagnostics
 - Technology Process Inadequate